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Quasilinear theory is a reduced approach to kinetic

instabilities

In a regime where orbits are stochastic (no effective particle trapping in resonances), the
kinetic (Vlasov) description of phase mixing can be approximated by an irreversible, diffusive
process f(z,v,t) f v t)=(f(x,0,1))
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For quasilinear theory to be valid, the linear mode properties (e.g., eigenstructure and

resonance condition) should not change in time

Quasilinear diffusion theory was independently proposed by

A. A. Vedenoy, E. P. Velikhov, and R. Z. Sagdeev, Sov. Phys. Usp. 4, 332 (1961).
W. Drummond and D. Pines, Nucl. Fusion Suppl. 2(Pt. 3), 1049 (1962).

Later generalized to action-angle variables:
A. N. Kaufman, Phys. Fluids 15, 1063 (1972).
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Historically, resonance overlap (Chirikov criterion) has

been invoked to justify the applicability of QL theory

Virl T Vi2 = |Vp2 _ Vp1|

In this case, most trapped particles will not “belong” to a
particular wave anymore but will be “shared” by the two
waves.

* Intrinsic stochastic diffusion: due to
interaction with broad spectrum

* Extrinsic stochasticity: by collisions
inducing randomization of phase x

I. Y. Dodin, Lectures notes on Waves in Plasmas, Princeton University

The end goal of this talk is to show that in the presence of collisions, a QL theory can be
formulated from first principles near marginal stability, even for a single resonance.
Interesting properties emerge:
(i) it recovers the saturation level predicted by nonlinear theory
@PPPL (ii) the resonance function can be analytically calculated ;



Critical gradient behavior in DIlI-D suggests that quasilinear

modeling is a viable modeling tool for fast ion relaxation

DIII-D critical gradient experiments
- stiff, resilient fast ion profiles as beam power varies
-stochastic fast ion transport (mediated by overlapping

resonances) gives credence in using a quasilinear approach
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Early development of broadened quasilinear theory

The broadening of resonances is a ubiquitous phenomenon in physics (e.g., in atomic spectra)
* In plasma physics, broadened strong turbulence theories for dense spectra have been developed
(e.g., Dupree, Phys. Fluids 1966);

For beam-plasma interaction in a tokamak, consider canonical
variables of actions Jand angles . In a tokamak, J is a combination ¢ =0Hy(J) /0] =Q(J)

of (€, P,, 1)

The line broadening model (6 () — R (Q)): d |wg|2 Jdt = 2 (v (t) — ) |wb|

of (2,t) =m0 8th
ot 2@9[ ’@ ]:CU‘?FO] o= [* g@m

e R is an arbitrary resonance function (usually taken as in flat-top form) with f_oo R(Q)dQ = 1
* )y is the trapping (bounce) frequency at the elliptic point (proportional to square

root of mode amplitude) H. Berk, B. Breizman, J. Fitzpatrick, and H.
Wong, Nucl. Fusion 35, 1661 (1995).
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The overlapping of resonances lead to losses due to

global diffusion

« Designed to address both regimes of isolated and overlapping resonances

— the fast ion distribution function relaxes while self-consistently evolving the amplitude of modes

without overlap with overlap
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Determining the parametric dependencies of the

broadening from single mode saturation levels

The broadening is assumed with the parametric form AQ = awy + bueff where the
coefficients a and b are determined in order to enforce QL theory to replicate known
nonlinear saturation levels:

1/4
Limit near marginal stability® wp = 1.18Vf (—%%L_OW)
> b=3.1

1/3
Limit far from marginal stability* wp = 1.2v¢ (%()7—;%>
> a=2.7

Resonance-broadened quasilinear formalism can cope with both situations of isolated
and overlapping modes

@PPR 3H. L. Berk et al. Plasma Phys. Rep, 23(9), 1997 “H. L. Berk and B. N. Breizman. Phys. Fluids B, 2(9), 1990
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Broadening was adjusted to replicate analytical predictions

for the mode saturation amplitude of single modes

Definitions: initial linear growth rate 7z, mode damping rate Yd and trapping (bounce)
frequency wy(proportional to square root of mode amplitude)

Collisionless case Collisional cases
* *
 Close to marginal . F{’vlrbflr_?m marginal
* ili Nty
Undamped case stability: vee> o, stability: w, > v
_ 1/4 _ 1/3
Wh = 32’YL Wy = 1.18]/eff (VL Yd) wp = 1.2Veff (')}L ')}d)
Va Va

Bounce (trapping) frequency wy, VS time t Bounce ('trapping) flrequency l"’b bl time't
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@ Expected saturation levels from analytic theory are shown by — — — o
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First-principle analytical determination of the

collisional resonance broadening — part |

ot ' op 90

from collisions, turbulence,...)

vk (Fo — f)
Start with the kinetic equation: ﬁ X Qg 1 Re (wgew) ﬁ — C[f, FO]{ygwttm (f — Fy) /092

Periodicity over the canonical angle allows the distribution to be written as a Fourier series:
w .
flo,Qt)=Fy (Q)+ fo(Q,t)+ > (fn (Q,t)e™? + c.c.)
n=1

Near marginal stability, a perturbation theory can be developed in orders of w%/u%)scatt

which leads to the ordering |F}| > f{(l)‘ > |12, f§(2)’. When memory effects are weak,
i.e., VK,scatt/ (’VL,O - f}/d) > ]v
2
_ wy £ Afo 1, 50 = 2% p1\
h= 2 (10 + vi) ot + 2 (wp (A1 @™ fi) = —vicfo




First-principles analytical determination of the

collisional resonance broadening — part Il

Blue curve: pitch-angle scattering
Red curve: Krook collisions

. . . . . Green curve: previous heuristic broadenin
When decoherence is strong, the distribution function has P (Berk, NF ,9g5)

no angle dependence: 0.4 —
ft) = Fo () + fo (Q,1) 0.3

Broadening (a)
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Self-consistent formulation of collisional quasilinear transport

theory near threshold

of (ut) w0 ) Or Q8] _
ot 209 [’ RO =5 ]—C[f,Fo]
D=3 [, doR2ED AL it = 2 (1)~ ) e

A QL theory naturally emerges when considering kinetic theory near threshold when
collisions occur at a time scale faster than the phase mixing time scale.

 The QL plasma system automatically replicates the nonlinear growth rate and the
wave saturation levels |wp so¢| = 84 (1 — 7d/7L,0)1/4 vk calculated from full kinetic
theory near marginality,

d

1 ¢
dr w% = (yL Vd)wB(f) - 7 p dr’ (1 — l")zw%(l‘/)] dty expl—v(2t —t' — 11)] a)129(t1)w123(t/ +1 —1)
t t—t'

(Berk, Breizman and Pekker, Phys. Rev. Lett. 1996)
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Verification of the analytical predictions against ORBIT

simulations of Alfvénic resonances

Modification of the distribution function vs canonical toroidal momentum
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Red and black: guiding-center ORBIT
simulation results for two different levels

of collisionality

Green: analytic fit

White, Duarte et al, Phys. Plasmas 26, 032508 (2019)
12



The Resonance-broadened quasilinear (RBQ) code: a

reduced, yet realistic approach to fast ion transport
[Gorelenkov, Duarte, Podesta and Berk, NF 2018, Duarte PhD thesis, 2017]

Workflow:
-background plasma profiles read from the TRANSP code —
-eigenstructure calculated by the NOVA code ‘—'z \
-damping rates and multi-dimensional resonance structure calculated by 3 3.
the NOVA-K code N
-RBQ evolves the distribution function together with the amplitudes of % : 159243071 classical
the modes =1
Diffusion equation: of 159243091 nominal
o o 5 f 90, -2 f —f) 600 650 700 tﬁg] 800 850 900
ot ol Z /D(I 1) ol ( ) 1) Vsscatt,lT Mode amplitude evolution:
| 1) _ 5 (140 ) C2(0)
D(I:1) = 5273 U—1) G o 90 ar 2 \mn = Vi) Cn
e o1 ~“o¢ ~"ap,
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* A systematic QL theory has been derived from first principles near an instability threshold, where the
collisional resonance broadening functions emerge spontaneously

* The derivation indicates that QL theory can be applicable to a single discrete resonance (with no overlap),
provided that stochasticity is large enough, as well as the usual overlapping regime

* An arbitrariness of collisional QL modeling (the shape of the resonance functions) has been removed

* The QL system (with the calculated broadening functions) systematically recovers the mode saturation
levels for near-threshold plasmas previously calculated from nonlinear kinetic theory

* Resonance functions have been implemented into the Resonance Broadening Quasilinear (RBQ) code

The use of the obtained resonance functions implies that fundamental features of nonlinear theory
are automatically built into broadened QL theory

@PPPL Duarte, Gorelenkov, White & Berk, “Collisional resonance function in discrete-resonance
quasilinear plasma systems”, Phys. Plasmas 26, 120701 (December, 2019) 14



Ongoing work: extension of the model to account for

collisional slowing down (drag)

of of i Of O (f — Fy) d(f — Fo)
e 0=L R 2 1\ ZJ — 37 \J “~U/ 2
or T, TR @) 5o =V g T g -
The main effect of drag is to introduce asymmetry and shift of the resonance Next'st'ep. to compare the quaS|I|near‘
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Comparison of the analytic results with BOT and ORBIT are under way!
(Lilley, Breizman & Sharapov, PRL 2009)
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For the future: work oriented along the lines of

the SciDAC ISEP project

2D implementation in RBQ
More validation exercises
Verification of new physics with ORBIT: saturation levels, timescale for mode evolution, broadening...

Inclusion of zonal flows?
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Verification: analytical collisional mode evolution near

threshold

Amplitude A vs time t for the full cubic equation
(green) and the analytical solution (black)

* Near marginal stability, the wave amplitude

evolution is governed by [Berk, Breizman and 20l (b)
Pekker, PRL 1996] 40 ~
30
L = AW - [arm [} dz2 At - 2)
- i 10f -
X fot ° dye‘”gffZQ(Qz/3+y)A(t —z—y)A*(t — 2z — y)} 0 ’
‘?eff=5
* An approximate analytical solution is found when : oL . .
Depr > 1:[Duarte & Gorelenkov, NF 2019] 0 10 20 30 40 50 x1003 10 20
t
A(t) = A(0)e 500 12
V1 —gA2(0) (1 — e2t) 400 (€) 9 (d)
g= de’HF(l/3 (2)""%is a resonance-averaged ;’88 6
collisional contribution evaluated by NOVA-K 100 5 o0 3 V.x=100
eff=
O0 2 4 6 0O 1 2 3 4
@PPR [Duarte & Gorelenkov, NF 2019] 18
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e same form of the function calculated by Dupree [T. H. Dupree, Phys.
Fluids 9, 1773 (1966)] in a different context, namely in the study of
strong turbulence theory, where a dense spectrum of fluctuations
diffuse particles away from their free-streaming trajectories. In that
case, the cubic term in the argument of the exponential is
proportional to a collisionless diffusion coefficient.

* the reduction of reversible equations of motion into a diffusive
system of equations that governs the resonant particle dynamics
without detailed tracking of the ballistic motion

* The collisional broadening of resonance lines is a universal
phenomenon in physics (e.g., atoms emission/absorption spectral
profile in atomic physics)
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